CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		Mark Scheme		Paper	
		Cambridge International AS/A Level – October/November 2014	9702	21	
1		temperature current (allow amount of substance and luminous intensity)		B1 B1	[2]
	. ,	case units of force constant: $kg m s^{-2} m^{-1}$ or $kg s^{-2}$ case units of time and mass: s and kg case units of $C: s (kg s^{-2}/kg)^{1/2}$ cancelling to show no units		B1 C1 B1	[3]
2	(a)	oressure = force / area (normal to the force) [clear ratio essential]		B1	[1]
	(b)	(i) $P = mg / A = (5.09 \times 9.81) / A$		C1	
		$A = (\pi d^2 / 4) = \pi \times (9.4 \times 10^{-2})^2 / 4 (= 0.00694 \mathrm{m}^2)$		C1	
		P = 49.93 / 0.00694 = 7200 (7195)Pa (minimum of 2 s.f. required)		A1	[3]
	(ii) $\Delta P/P = \Delta m/m + 2\Delta d/d$		C1	
		= $0.01 / 5.09 + (2 \times 0.1) / 9.4$ (= $0.0020 + 0.021$ or 2.3%)		C1	
		$\Delta P = 170 (165 \text{ to } 167) Pa$		A1	[3]
	(i	ii) P = 7200 ± 200 Pa		A1	[1]
3	(a)	random error (in the measurements) of the length OR resistance		B1	[1]
	(b)	gradient = (3.6 – 1.9) / (0.8 – 0.4) = 4.25		C1 A1	[2]
	(c)	$R = \rho l / A$		C1	
		o = gradient × area = $4.25 \times 0.12 \times 10^{-6}$		C1	
		= $5.1(0) \times 10^{-7} \Omega \mathrm{m}$		A1	[3]
		resistance decreasing with increasing area correct shape with curve being asymptote to both axes		B1 B1	[2]

P	age 3	Cambridge International AS/A Level – October/November 2014 9702	21	
4	(a) (i)	acceleration = $(v - u) / t$ or $(12 - 0.5) / 4$	C1	
		= $(12 - 0.5) / 4 = 2.9 (2.875)$ (= approximately 3 m s^{-2})	M1	[2]
	(ii)	x = (u+v)t/2		
		$= [(12 + 0.5) \times 4] / 2$	C1	
		= 25 m	A1	[2]
	(iii)	line with increasing gradient non-zero gradient at origin	M1 A1	[2]
	(b) (i)	weight down slope = $2 \times 9.81 \times \sin 25^{\circ}$ = $8.29 / 8.3$	M1	[1]
	(ii)	$(F = ma)$ 8.3 - $F_R = 2 \times 2.9$	C1	
		$F_{R} = 2.5 (2.3 \text{ if 3 used for } a) \text{ N}$	A1	[2]
5	(a) (i)	change in kinetic energy = $\frac{1}{2}mv^2$	C1	
		$= 0.5 \times 25 \times (0.64)^2 = 5.1(2) J$	A1	[2]
	(ii)	zero	A1	[1]
	(iii)	(-)5.1(2)J	A1	[1]
	(b) (i)	PE = mgh	C1	
		= 350 × 0.64 × 25	C1	
		= 5600 J	A1	[3]
		(If full length used allow 1/3)		
	(ii)	$P = Fv$ or gain in PE/t , E_P/t or work done/t, W/t	C1	
		= 350×0.64 or $5600 / 25$		
		= 220 (224) W	A1	[2]
6		nelting: solid to liquid t a specific/one temperature/at the melting point		
		ration: liquid to vapour/gas OR molecules escape from surface of liquid emperatures	B1 B1	[4]

Mark Scheme

Syllabus

Paper

Page 3

Page 4		Cambridge International AS/A Level – October/November 2014		21	
(a)		e to the lost volts in internal resistance/cell or energy losses the internal resistance/cell	9702	B1	[1]
(b)	(i)	V = IR		C1	
		$= 1.2 \times 6 = 7.2 \text{V}$		A1	[2]
	(ii)	p.d. across Y and internal resistance $r = 4.8 \text{ (V)} [12 - 7.2]$		C1	
		resistance of Y + r = 4.8 / 1.2 = 4(Ω)		C1	
		resistance of Y = $4 - 0.5 = 3.5 \Omega$		A1	[3]
		or			
		$R_{\text{total}} = 12 / 1.2 = 10 (\Omega)$	((C1)	
		$X + r = 6.5 (\Omega)$	((C1)	
		resistance of Y = 3.5Ω	((A1)	
	(iii	$P = I^2 r$		C1	
		$= (1.2)^2 \times 0.5 = 0.72 \mathrm{W}$		A1	[2]
(c)		rminal p.d. increases as <i>R</i> is increased rrent decreases so there are less lost volts		B1	[1]
(a)		o waves (of the same kind) travelling in opposite directions overlap aves have same frequency/wavelength and speed		B1 B1	[2]
(b)	(i)	T = 0.8 (ms)		C1	
		$f = 1 / (0.8 \times 10^{-3}) = 1250 (Hz)$		A1	[2]
	(ii)	microphone is moved from plate to loudspeaker or vice versa wavelength is the twice the distance between adjacent maxima or n	ninima	B1	
		(seen on c.r.o.)	IIIIIIIIa	B1	[2]
	(iii	$v = f\lambda$		C1	
		= 1250 × 0.26			
		$= 330 (325) \mathrm{m s^{-1}}$		A1	[2]

Mark Scheme

Syllabus

Paper

Page 4

7

8